Centaurs with the Large Synoptic Survey Telescope

Michael S. P. Kelley* University of Maryland Meg Schwamb Gemini Observatory

Centaur Exploration Workshop

Florida Space Institute

2019 March 6 - 8

*Thanks to LSST Corp. for travel funds.

Photo credit: LSST Project/NSF/AURA

LSST Solar System Science Collaboration (SSSC)

David Trilling & Meg Schwamb SSSC Co-Chairs

Large Synoptic Survey Telescope Solar System Science Collaboration

www.lsstsssc.org

Wes Fraser LSST: UK Solar System POC

Active objects Working Group (Lead: Mike Kelley): broadly consisting of all categories of activity in the minor planet populations: short period comets, long period comets, main belt comets, impact- or rotationally-generated active asteroids, etc

Community software/infrastructure development Working Group (Lead: Henry Hsieh): broadly consisting of people interested in helping build databases, software packages, etc to be used by the Solar System community on LSST data

Inner Solar System Working Group (Lead: Cristina Thomas): broadly consisting of the main belt, Mars/Jupiter Trojans, and Jupiter irregular satellites

Outer Solar System Working Group (Lead: Darin Ragozzine and Matt Holman): broadly consisting of KBOs, Centaurs, Oort cloud, Saturn/Neptune/Uranus Trojans, and Saturn/Neptune/Uranus irregular satellites

An optical, time-domain survey telescope.

At Cerro Pachón, Chile.

8.4-m primary mirror and 3.2 gigapixel camera.

189 4k \times 4k CCDs, 0.2" per pixel, >90% fill factor.

9.6 square degrees FOV.

30-s exposure 5σ depth 22 to 25 mag.

About 2.6 million sky images over 10 years.

LSST Project/NSF/AURA

LSST Project/NSF/AURA

2nd LSST Solar System Readiness Sprint June 4-6, 2019 Chicago, IL

https://goo.gl/forms/xXadBR9iqqRatmbV2

A D L E R P L A N E T A R I U M

Image credit: - Chris Smith -

ADLER

We are expecting 1000s of Centaurs will be observed and characterized with LSST (LSST Science Book)

But what does that exactly mean?

→ With LSST operations simulations and a catalog of Centaur orbits, we can determine what kind of data to expect, and consider what results can be made from those data.

The International Astronomical Union Minor Planet Center

OBSERVERS PUBLIC DATA

Processing (Info)

List Of Centaurs and Scattered-Disk Objects

Information on <u>converting absolute magnitudes to diameters</u> is available, as is an <u>explanation of the quantities gi</u>

This list is updated daily and is also updated as and when new objects are discovered.

Designation (and name)	Prov. Des. ♦	q ¢	Q ¢	н \$	Epoch \$	M \$	Peri. ¢	Node \$	Incl.	e ¢	a ¢	0pp
	2019 CY4	10.090	84.798	11.2	20190427	359.9	87.3	61.5	19.6	0.787	47.444	
	2019 CR	5.871	23.153	13.4	20190427	351.8	332.4	23.1	160.3	0.595	14.512	
	2019 AB7	20.332	33.302	9.5	20190427	15.4	36.4	64.6	12.1	0.242	26.817	
	2018 V035	33.448	222	6.6	20181208	342.8	307.5	235.9	18.6	0.738	128	
	2018 VM35	45.289	436	7.6	20181208	356.2	302.0	192.5	8.5	0.812	241	
	2018 VG18	21.739	169	3.6	20181118	73.8	32.9	247.4	31.7	0.772	95.234	

MPC list with:

- aJ < q < aN
- at least 1 opposition of astrometry

*

→ 302 objects

2019 March 6 - 8

Kelley & Schwamb

Centaur Exploration Workshop, Florida Space Institute

HOME

Centaur Exploration Workshop, Florida Space Institute

Centaur Exploration Workshop, Florida Space Institute

A notional plot of what could be done.

Assumes $dn/dH = H^{0.33}$

These differential and cumulative completeness curves are based on a list of **known objects**, which is a **biased sample** of the Centaur population.

Centaur Exploration Workshop, Florida Space Institute

What to expect from today's known population?

- Lightcurve inversion
- Colors, and distribution with H
- Activity distribution
 - vs. true anomaly for closer objects
 - vs. heliocentric distance for the population
- LSST + Gaia catalog = occulations: diameters and rings
- LSST + JWST = surface composition
- LSST + ALMA = ????
- LSST + your telescope here =

How do we effectively study LSST's Centaur discoveries?

Centaur science has key time-domain aspects: not just new objects, but also events like outbursts, and new activity.

- Follow-up resources are limited, especially those that are queue scheduled, due to demand from all time-domain disciplines.
- How can we enable communication between the collaboration?
- Would Centaur and other Solar System astronomers want a new iteration of the observing campaign site? or an evolution of it?

General Solar System Data Products

Prompt Products

Nightly or shorter timescale.

- Alerts associated with all identified solar system objects, including metadata.
- Moving object tracks (to MPC).
- Orbit catalog for LSST discovered objects.
- Calibrated images.

Data Release Products

Annual release schedule.

- Object catalog with precise photometry.
- Re-calibrated images.

A lot of the tools to efficiently digest these products are up to the community to develop.

Centaurs observed via the Baseline 2018a simulation.

Note the final survey parameters have not been defined, so any results are notional.

Kelley & Schwamb

Centaur Exploration Workshop, Florida Space Institute

2019 March 6 - 8